

MIT Iddo Drori, Fall 2020

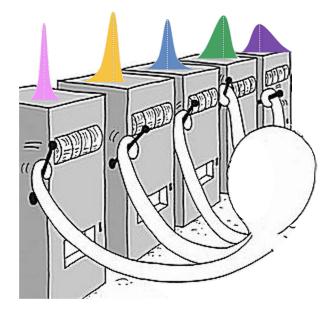
Multi-Armed Bandit

Stateless

- Action: pull one of *k* arms
- Reward for pulling that arm

at each time step *t* :

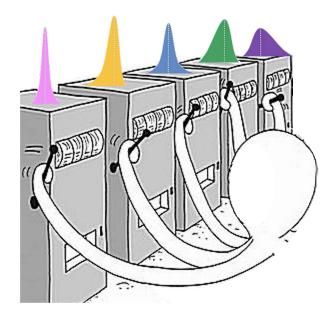
choose action *at* among *k* actions receive reward *rt* for taking action *at*



- Taking action a is pulling arm *i* which gives reward r(a) with probability p_i
- Probabilities distributions *p*1,...,*pk* are unknown
- Goal is to maximize total expected return

Multi-Armed Bandit

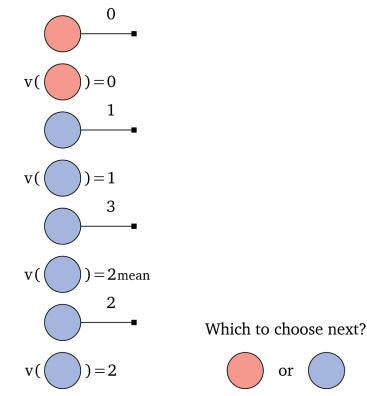
- Value of action a is expected reward: Q*(a) = E[rt | at = a]
 we don't know the action values
- Estimate value of action a at time t: $Q_t(a)$
- For example keep current mean reward for each action



Greedy Action

- A greedy action takes the best estimate at time *t*, exploiting knowledge
 at = argmax_a Qt(a)
- For example choose action with largest mean reward.
- A non-greedy action is exploring.

Greedy Action Selection



E-Greedy

• Behave greedily most of the time:

with probability \mathcal{E} choose random action with probability $1 - \mathcal{E}$ choose greedy action

for each each action *a* do

$$Q(a) = 0$$

 $N(a) = 0$ number of times action is chosen

for each time step do

 $a = \underset{a}{\operatorname{argmax}}Q(a)$ with probability $1 - \epsilon$ and random action with probability ϵ . $N(a) = \overset{a}{N}(a) + 1$ Q(a) = Q(a) + (r(a) - Q(a)) / N(a)

Upper Confidence Bound (UCB)

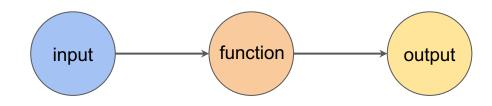
- Optimism in face of uncertainty
- Use both mean and variance of reward

 $\operatorname{argmax}(\mu(r(a)) + \epsilon \sigma(r(a)))$

- Finite-time Analysis of the Multiarmed Bandit Problem, Auer et al, Machine Learning, 2012
- Used in Monte Carlo tree search (MCTS), in expert iteration and AlphaZero.

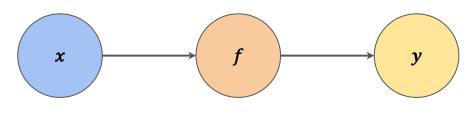
Observation

- Input **x**_{dx1}
- Function *f*
- Output y_{1x1}



Observation

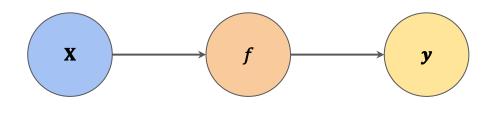
- Input \boldsymbol{x}_{dx1}
- Function *f*
- Output y_{1x1}



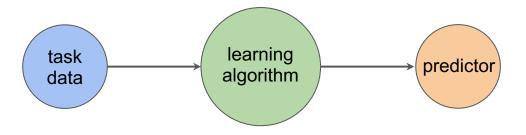
y = f(x)

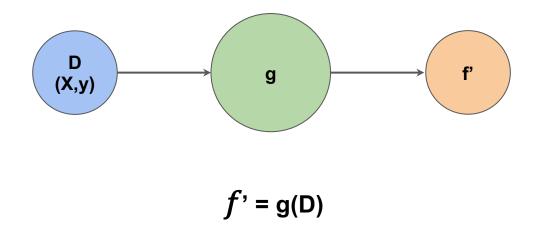
Observations

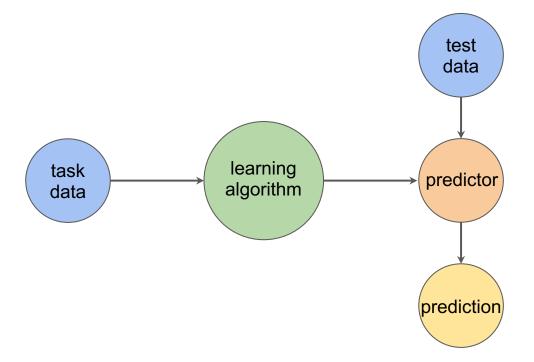
- Input X_{dxm}
- Function *f*
- Output y_{mx1}

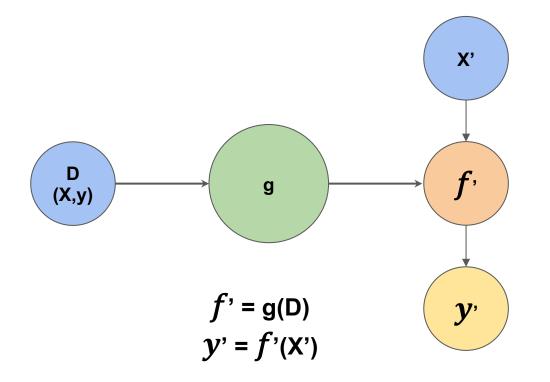


y = f(x)

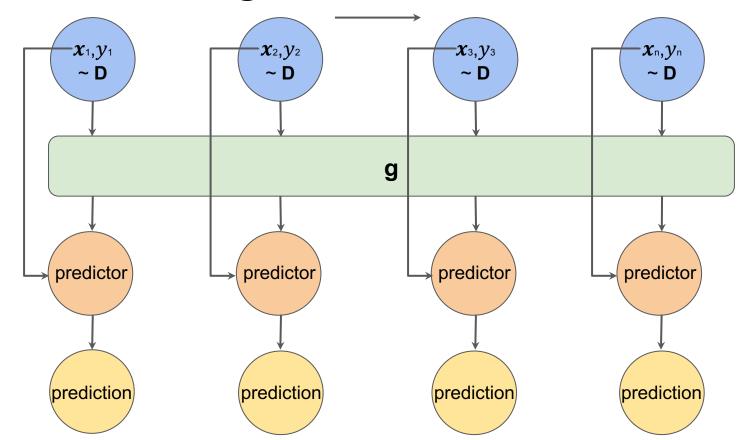


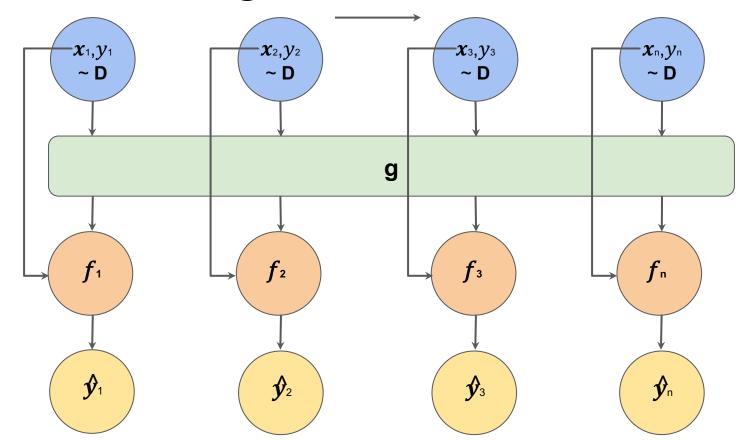






- Learning algorithm **g** interacts with oracle multiple rounds
- **g** holds a classifier f
- For each round
 - Oracle selects a pair (x, y)
 - Learning algorithm **g** presented with sample *x*
 - **g** outputs prediction $\hat{y} = f(x)$
 - Oracle reveals ground truth label y
 - **g** changes *f* if mistaken: $y \neq \hat{y}$





- Goal of learning algorithm **g** is to make as few mistakes
- Oracle may be adversary

Perceptron Algorithm

- init $\theta = 0, \theta_0 = 0$
- for t = 1..T

changed = false

- for i = 1..n
 - given example *x*
 - if prediction was a mistake $y_i(\boldsymbol{\theta}^T \boldsymbol{x}_i + \boldsymbol{\theta}_0) \leq 0$
 - then update $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \boldsymbol{x}_i$, $\boldsymbol{\theta}_0 = \boldsymbol{\theta}_0 + y_i$
 - changed = true
- if not changed then break

Winnow Algorithm

- Boolean feature vector x in $\{0,1\}^{"}$
- Weights $w = (w_{1,...,w_n})$ initialized to 1's
- Given example x then if $w^T x > t$ predict 1 otherwise 0
- If mistakenly predicted 1 then set $w_i = 0$ for all i s.t. $x_i = 1$
- If mistakenly predicted 0 then set $w_i = 2w_i$ for all i s.t. $x_i = 0$

Halving Algorithm

- For each round
 - Each expert i = 1..N makes a prediction $\hat{y}_i = f_i(x)$
 - Take majority vote of correct experts until round
 - Oracle reveals ground truth label *y*

- Algorithm with as few mistakes as possible
- If there is a perfect expert then at most logN mistakes

Online Learning to Batch Learning

- Given online learning algorithm g
- Examples S of pairs (*x*,*y*)
- Repeat
 - for each pair (x,y) in S
 - predict \hat{y} using **g**
 - If $y \neq \hat{y}$ remove pair from S
- Until no mistake is made

Continual (Lifelong, Sequential) Learning

- Neural network classification: training and testing generalization, static, often training from scratch
- Continual learning: incremental, dynamic

- Neural networks have catastrophic forgetting of old concepts when learning new concepts
- Humans gradually forget, not completely forget all at once

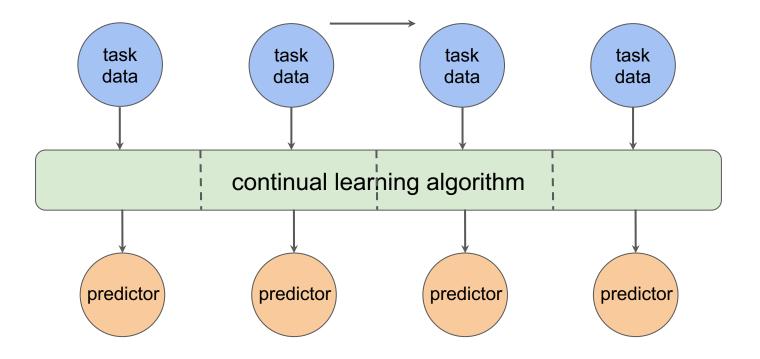
Stability vs. Plasticity

 Learning algorithm should preserve what it has learned: stability

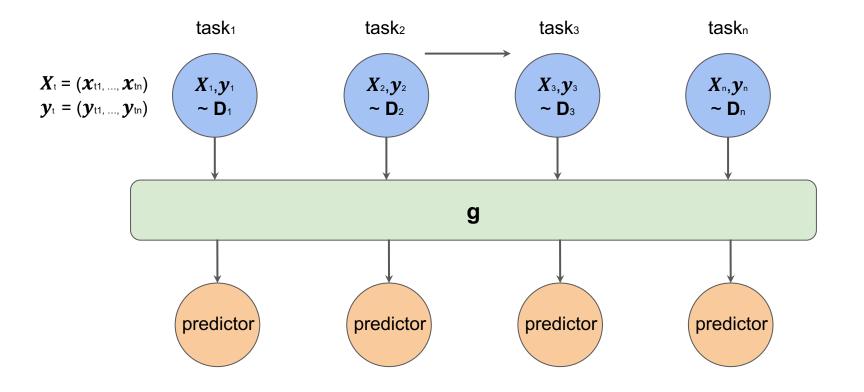
 Learning algorithm should quickly learn a new task: plasticity

Goal: effectively update neural network with new information over time

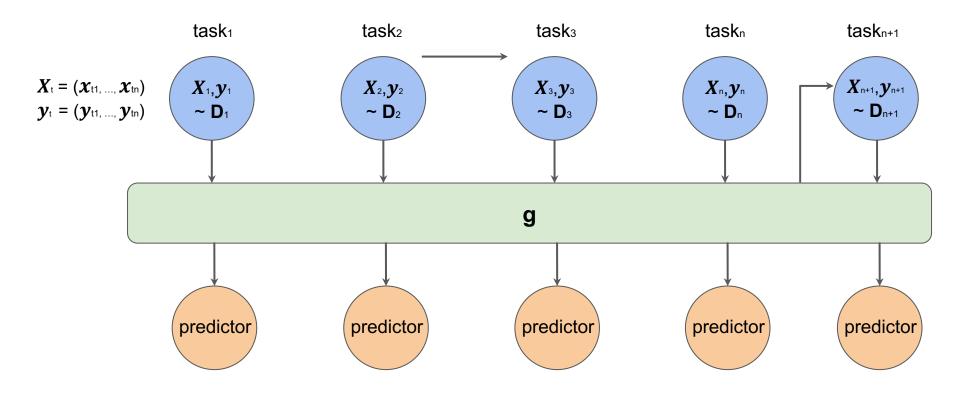
Continual (Lifelong) Learning



Continual (Lifelong) Learning



Learning New Tasks



Human Learning on the Job

- 10% formal education and training
- 70% on the job learning
- 20% observation of others
- Open world, self-supervision
- Discover new tasks and continually learn them

Learning on the job: Online lifelong and continual learning, Liu 2020.

Continual (Lifelong, Sequential) Learning

- Endless data stream
- Goal is to learn without catastrophic forgetting performance on previously learned task should not significantly degrade over time when learning new tasks

Backward Transfer

 Influence that learning task t has on performance on previous task k < t:

Rij is test accuracy of model on task j after observing last sample from task i

- Positive backward transfer: learning task t increases performance on preceding task k.
- Negative backward transfer: learning task t decreases performance on preceding task k.
- Catastrophic forgetting: large negative backward transfer.

Forward Transfer

 Influence that learning task t has on performance of future task k > t.

bi is test accuracy for task i at initialization

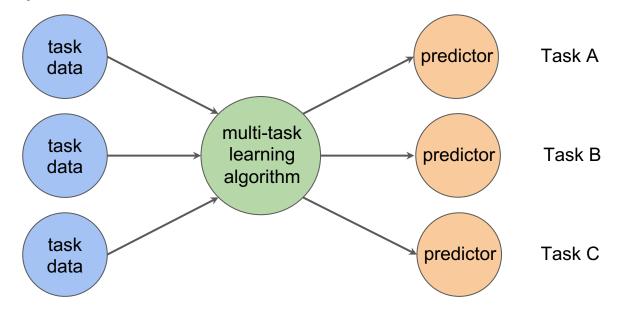
 Positive forward transfer: possible when model is able to perform zero-shot learning. For example, using structure available in task descriptors

Continual (Lifelong, Sequential) Learning

- Sequential tasks with batches of data
- Optimizing for a new task directly results in catastrophic forgetting

Multi-Task Learning

 Storing all past examples reduces continual learning problem to multi-task problem



Continual (Lifelong, Sequential) Learning

Perform well on all previous tasks t optimizing:

 ∑t=1..T E Xt,yt~Dt (L(ft(Xt,θ), yt))

yt is a vector yt1,...,ytn

• For current task t

 $1/n \sum_{i=1..n} \mathcal{L}(f(x_i, \theta), y_i)$

Replay Methods

- Store past samples or generate pseudo samples
- Store sample subset of observations, for example representing each class
- Reuse for training when learning new task, interleave training on new and memorized data

Reservoir Sampling

- Stream (xi,yi) for i=1...n
- Memory size m
- For i = 1..n
 - If memory is not filled then store (xi,yi)
 - Else sample u ~ Uniform(0,1)
 - − If u <= m/i
 - Replace random stored instance of class c == yi with (xi,yi)

Else ignore (xi,yi)

Reservoir Sampling

- Stores iid subset of stream
- Problem: if stream is imbalanced then memory is imbalanced
- Forgetting underrepresented classes quickly
- Solution: take into account labels of observed instances
- Store underrepresented classes, iid subset of each class

Class Balanced Reservoir Sampling

- Stream (x_i,y_i) for i=1..n
- Memory size m
- For i = 1..n
 - If memory is not filled then store (x_i, y_i)
 - Else
 - If c == y_i has not been largest class

Overwrite a random instance from largest class with (x_i,y_i)

- Else mc=# stored instances of class c == yi, nc = total # of stream instance of class c == yi
- sample u ~ Uniform(0,1)
- If u <= mc/nc
 - Replace random stored instance of class $c == y_i$ with (x_i, y_i)

Else ignore (x_i,y_i)

Online continual learning from imbalanced data, Chrysakis et al, 2020.

Average Gradient Episodic Memory

- Store subset of observed examples of each task
- Minimize loss on current task while treating average losses of episodic memories of previous tasks as inequality constraint
- Avoid increasing, allow decreasing previous average loss, allows positive backward transfer. Learning task t objective:

min $\theta \mathcal{L}(f_{\theta}, Dt)$ s.t. $\mathcal{L}(f_{\theta}, M) \leq \mathcal{L}(f_{\theta_{t-1}}, M)$

where M = UMk for all k < t

 $f_{\theta_{t-1}}$ is the network trained until task t-1

 Increase in loss of previous tasks: computing angle between their loss gradient vector and proposed update

Efficient lifelong learning with A-GEM, Chaudhry et al, 2019

Regularization Methods for Continual Learning

 Add regularization terms in loss: penalize changes in network parameters when learning new task

• For example, per-parameter regularization parameters

Neural Network Training

- Optimizing parameters: finding most probable values given data D
- Bayes rule, log, rearranging terms

$$\log p(\boldsymbol{\theta}|D) = \log p(D|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) - \log p(D)$$

$$L(\boldsymbol{\theta}) = -\log p(D|\boldsymbol{\theta})$$

Regularization for Continual Learning

• Data split into independent parts D₁ and D₂ for tasks:

 $\log p(\boldsymbol{\theta}|D) = \log p(D_2|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}|D_1) - \log p(D_2)$

 $L_2(\theta) = -\log p(D_2|\theta)$, all information of task 1 in posterior log $p(\theta|D_1)$, approximate

- Estimate distribution over model parameters, use as prior when learning from new data, penalize changes to important parameters
- Remember old tasks: slow learning on weights for old tasks

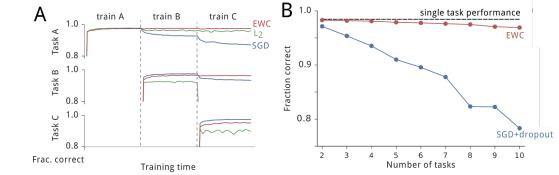


Figure source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017

Elastic Weight Consolidation

• Given approximation

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}_2(\boldsymbol{\theta}) + \sum_{i} \alpha/2 \boldsymbol{f}_i(\boldsymbol{\theta}_i - \boldsymbol{\theta}^*_{1i})$$

- $\mathcal{L}_2(\boldsymbol{\theta})$: loss of task 2 only
- α : importance of old task compared with new task
- i: each parameter label

Source: Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017

Iterative Pruning and Retraining

 Exploit redundancies in DNNs to free up parameters that are used to learn new task

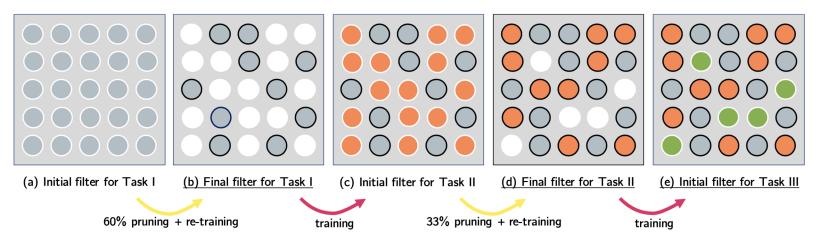


Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018

Iterative Pruning and Retraining

- Training:
- Initial training of network for task 1 learns dense filter
- Pruning and re-training results in sparse filter for task 1: white circles 0 weights, task 1 weights in gray remain fixed and are not pruned.
- Pruned weights are updated for task 2: filter for task 2 shares weights learned for task 1.
- Pruning and re-training results in filter used for evaluating task 2, weights for task 2 (orange) are fixed. Process continues until running out of pruned weights

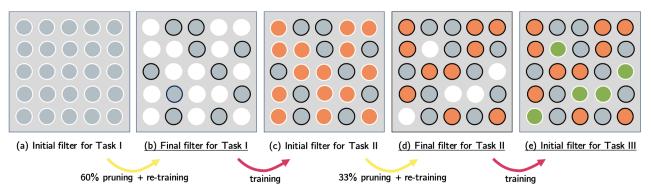


Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018

Iterative Pruning and Retraining

 Testing: appropriate masks applied depending on task to replicate filters learned for task

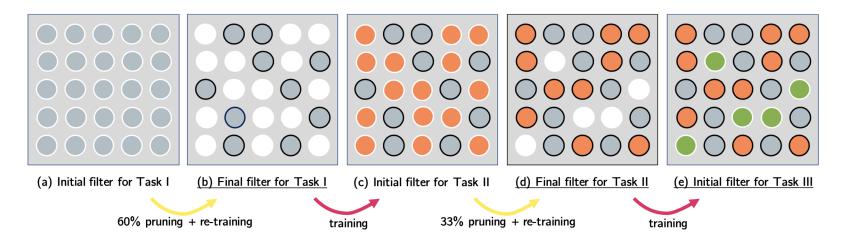


Figure source: PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya and Lazebnik, 2018

Self-Supervised Learning

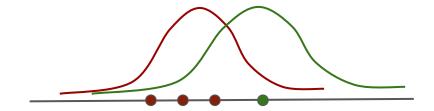
- Transform unlabeled images
- Label images according to transformation
- Train network with parameters (θb, θs)

θb shared backbone parameters, θs self-supervision parameters

Transfer learning using θb fine tuning for main task (θb, θm)
 θm main task parameters

Distribution Shift

• Training and test distributions are often different



- Unlabeled test sample x provides hint about test distribution
- Allow model parameters θ to depend on test sample x
- Learn from a single sample using self-supervision

Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

• Training

 $min_{\theta b, \theta m, \theta s} \mathcal{L}_m(X, \mathbf{y}; \theta b, \theta m) + \mathcal{L}_s(X, \mathbf{y}_s; \theta b, \theta s)$

- Testing: initialize with $\theta = (\theta b, \theta s)$ from training min_{\theta b, \theta s} \mathcal{L}_s(x, y_s; \theta b, \theta s)
- Prediction: $\theta(x) = \theta^* b$, θm , where $\theta^* b$ is from testing
- Online prediction: θ(xt) initialized with θ(xt-1), allows using information in x1,...,xt

Source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

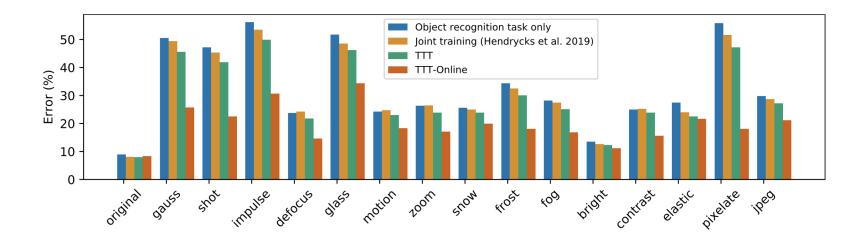


Figure source: Test-time training with self-supervision for generalization under distribution shifts, Sun et al, 2020

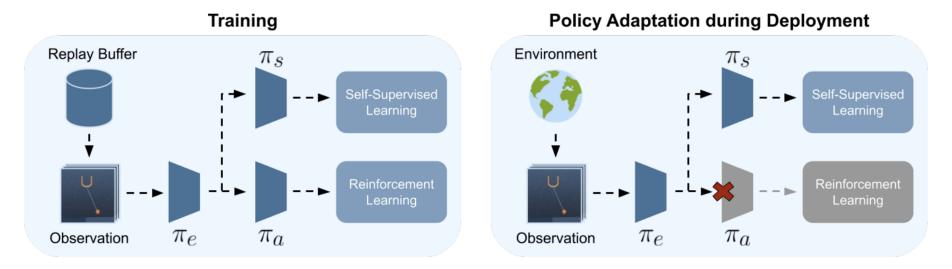


Figure source: Self-supervised policy adaptation during deployment, Hansen et al, 2020

Lifelong Latent Actor-Critic

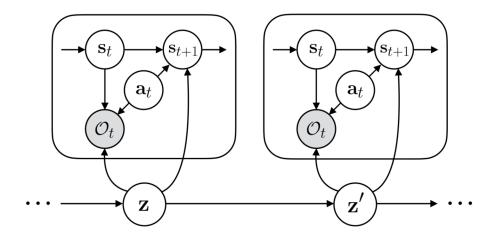


Figure source: Deep reinforcement learning amidst lifelong non-stationarity, Xie et al, 2020

Open-Ended Reinforcement Learning

- Grow population of environment-agent pairs
- Continually produce new and increasingly complex environments using mutations, random perturbations
- Train agents that learn to solve them
- Goal switching
- Compute distance between environments

Source: Enhanced POET: Open-ended reinforcement learning through unbounded invention of learning challenges and their solutions, Wang et al 2020

Self-Modeling

- 1. Robot recorded action-sensation pairs
- 2. Deep learning self-model consistent with data
- 3. Self-model used for planning of separate tasks
- 4. Emulate damage and morphological change
- 5. Adapting self-model from new data
- 6. Continual tasks

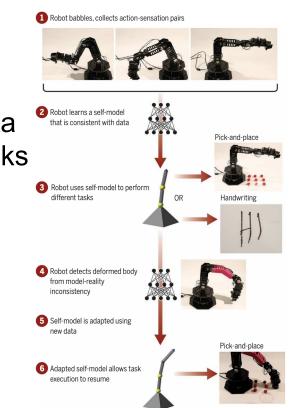


Figure source: Task-agnostic self-modeling machines, Kwiatkowski and Lipson, Science Robotics 2019

MIT Iddo Drori, Fall 2020